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SUBELLIPTIC ESTIMATES FOR THE
0-NEUMANN PROBLEM IN (2

PETER GREINER

1. Introduction

In this paper we prove a conjecture of J. J. Kohn concerning precise sub-
elliptic estimates for the local 6-Neumann problem in C% Let 2 be a bounded
open set in C* with C* boundary w. If  is pseudoconvex near a point P ¢ o,
and P is of type m (the precise definitions are given in § 2), then Kohn proved
that the subelliptic esitimate

Il < CAIBglIE + 166115 + 18116

holds for all s < 1/(m + 1) (see [8, (7.4)]). Here ¢ is a C~ one-form with
compact support in 2 N U where U is some sufficiently small neighborhood
of P, g is the adjoint of 5, and ¢ is in the domain of 4.

In [7] and [8] Kohn suggested that (i) the subelliptic estimate in question
holds with s = 1/(m + 1), and (ii) it cannot hold with s > 1/(m + 1). In
Theorem 3.7 of this paper we shall prove the second conjecture. We do not
know whether s = 1/(m + 1) is achieved. In proving Theorem 3.7 we make
use of results obtained by Yu. V. Egorov [1], L. Hérmander [4], [5] and W.
J. Sweeney [9], which enable us to reduce the problem to a similar question
concerning a system of pseudo-differential operators on w. We shall compute
these pseudo-differential operators with great precision by utilizing some re-
sults of Kohn (see [7] and [8]) concerning the behavior of @ near a point of
type m. Our notation and terminology are standard (see e.g. [3] and [4]).

2. The Levi invariants

We recall the basic definitions of [8]. Let £ be a bounded open subset of
C? with C~ boundary , and let (P) denote the distance of the point P from
w, and assume that r < 0in £ and r > O outside of 2. A vector field L is said
to be Aolomorphic in some open set U C C? if it can be written in the form

2.1) L= a‘—a— + azi R ate C(U) ,

0z, 0z*
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where 3/9z; = 3(8/3x; — i(d/ay;)), j = 1,2. A vector field L is said to be
tangential if at each }_)oint of w it is tangent to w, thatis, if L(r) = 0 at r = 0.
As usual we define L by

F 4 0 o 0
(2.2) L=a—_—"— +ad—.
9z, 0Z,

If T, and T, are two vector fields, we define the Lie bracket by [T, T,] =
T.T, — T,T,. The Lie algebra generated by T, and T, over the C* functions
is the smallest module over the C* functions closed under [, ], and is denoted
by #{T,, T,}. &{T,, T,} is filtered, that is,

g{TI’Tz} =kL~_Jogk{T1’T2} )

where & {T,, T,} is the module spanned by T, and T,, and %5 ,{T;, T,} is the
module spanned by the elements of %,{T,, T,} and the elements of the form
[4,T,] with 4 € Z,{T,, T,}. Set

$=${L,E}, $k=$k{LaI—'}’

where L is a holomorphic tangent vector in some neighborhood of a point
P e w, which is different from zero at P. We note that the ¥ and %, evaluat-
ed at P do not depend on the choice of L.

2.3. Definifion. P e w is said to be of finite type if there exists F ¢ &
such that {(6r)z, Fp» = 0. Here ¢, > denotes contraction between cotangent
vectors and tangent vectors, and the subscript P denotes evaluation at P. P of
finite type is said to be of type m if m is the least integer such that there is an
element in %, satisfying the above property.

2.4, Definition. £ is said to be pseudo-convex near a point P ¢ @ if there
is a neighborhood U of P such that

2.5 or,[L, L,y = 0,

where L is a nonzero tangential holomorphic vector field.
2.6. Definition. If £ is pseudo-convex near a point P e w, and P is of
type m, we say that o is pseudo-convex of order m at P.

3. The local 5-Neumann problem in C*

Let H{2 and H{) denote the Sobolev spaces on £ and o respectively (see
e.g. [3]) with norms denoted by || {3’ and | |/{¢ as usual. These spaces and
norms are well defined for vector functions, in particular, for (0, 1)-forms
& = $,d7, + $,4Z;, $1, ¢ € C=(£2). On (0, 1)-forms we have
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(3.1 3¢ = (a¢2/az1 - 3¢1/322)dz1 N dz, .
Let 4 denote the formal adjoint of 5 operating on (0, 1)-forms, that is,

(32) (85257 11b‘)1.'~'<£7) = (¢, ‘91#)L'—’(.Q) s

¢ € Cy(2) and v e D, ,,(2), where D ,,(2) stands for C~ (0, 1)-forms with
compact support in . More precisely we have

(33) 0(¢1dZ1 + ¢2dz2) = — a¢1/azl - astz/azz -

Now we can state the main result of [8].

3.4. Theorem. Let P € w be a point of type m, and U be an open neigh-
borhood of P such that U N w is pseudoconvex. Then there exists a constant
C, forall s,0 <s<1/(m+ 1), such that

(3.5) Il < Cloglis) + 1661 + N1

for all g € D, (U N D) satisfying {,3ry = 0onw N U.
We note that <+, 3r> = 0 on @ N U is equivalent to

(og, by =<8, 0%y, €Dy, (UND) .

When m = 1, (3.4) holds with s = %, and this is the best possible estimate
(see [4], [6] and [10)). When m > 1, we do not have such a precise result.
On the other hand, we have the following result.

3.7. Theorem. Let Pcw be a point of type m, and U a neighborhood
of P. Then the estimate (3.5) does not hold with any s>1/(m + 1).

The proof of Theorem 3.7 will be given in §§ 4, 5 and 6.

4. The § operator near a point of type m

Let Pew be a point of type m, and U a sufficiently small neighborhood
of P. By an affine change of coordinates we construct coordinates z7,z; in U
such that

“4.1) Z(P) = zy(P) = (0r[9z)p = (@r/37)p = (0r/3y)p =0,
@riox)r =1,

where z{ = x{ + iy; and z{ = x; + iy;. Now r has the following Taylor series
expansion

(4.2) r(@) = Re h(z) + 11b.(z’) + O(IZ/[md-Z) ,

where (z’) is a polynomial of degree m + 1 such that each term contains
z;7); as a factor and
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4.3) W) = 3 ﬁ [6/02) (3322 .

s+tSme1
According to (4.1) and (4.2)

4.4 @h/3z), =0, (0h)8Z)y = (@rfox), = 1.

Thus z{ and 4 are linearly independent in U (here we need U to be sufficiently

small), and therefore we can introduce holomorphic coordinates w, = u, + iv,,
w, = u, + iv, defined by w, = z; and w, = h. Then (4.2) becomes

4.5) rwy, wy) = u, + y(w, wp) + O(w™*9) ,
where
(4.6) 7w, wy) = O(wp)

is a polynomial of degree m 4 1 which contains no pure terms, that is, holo-
morphic or antiholomorphic terms.
To derive a precise expression for the d operator we set

[Frlo = ry, dw, — I, dW, , [Vr|e® = 1y, dw, + r,, dw, = or

where r,, = dr/éw,, etc., so that w, and o, yield a basis of the (1,0)-forms in

U. Let ¢ = ¢,8" + ¢,@°. From (3.1) it is easy to see that the & operator on
(0,1)-forms ¢ has the following expression in terms of the basis @' and @*:

3¢ = (— M¢, + Lg)a' N\ @

“.7n .
+ (terms in which ¢, and ¢, remain undifferentiated) ,
where
0 2

48 VriL = Py — — 1 4
.8 b “ow, e ow,
(4.9) PrM = rp, 0 + 1y 0

ow, ow,

Given ¢ = ¢,@' + ¢, the 5-Neumann boundary condition {g, or> ='O_ on w
is equivalent to the vanishing of ¢, on w. If ¢ = ¢,@' + ¢,@° € Co(U N 2) and
¢, = 0 on w, then 6¢ is well defined and is given by the expression

6 = — (L + Mg,)

4.10
( ) -+ (terms in which ¢, and ¢, remain undifferentiated).
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Thus in terms of the basis &', @ the principal part of the 5-Neumann operator
on (0,1)-forms is given by

4.11) D, = Cf _ij) .

4.12. Lemma. Let P e o be of type m. Then y(w,,0) is a homogeneous
polynomial in w, of degree m 4+ 1. More precisely

1

LsLtor, [L, LD>ws* ittt o
N s VI P T e A

4.13) om,0) =

Proof. See Kohn [8, Lemma 3.16].
Consider

4.14) r=u, + (i, v, U, v,) + OQuj™** + jo[™*?) =0,

where we set u = (u,, 4,) and v = (v,, v,). Since (0r/ou,), = 1, we can solv¢
(4.14) for u, = u,(u,, v,, v,) in a neighborhood of 0.

4.15. Lemma. Let u,(u,,v,,v,) be a solution of (4.14) in some neigh-
borhood of 0. Then

aL‘.' kuz(o) _

4.16
( ) oulovy

0 if I+k<m.

Proof. According to Lemma 4.12

al + kr(o) _

4.17
( ) oulovt

0 if I+k<m.

By the definition of r, u,(0) = 0. Next, replacing u, by w,(u,, v,, v,) in (4.17
we obtain

% _aL ﬁl% O(u, |m+1 r?t) =0
6u,+6u1+8u26u1+ (™™ + 1] '

Since y = O(luf + [v), this implies that

30 _ ¢ and similarly 22© _ ¢ .

ou, v,

(4.18)

Now suppose that

gl +k u, (0)
dutovt

4.19) =0 if I+k<p
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for some p << m. Then for a fixed ! and £ satisfying I + & = p + 1 we have

a;p-(—luz api.-lr

outavy oulovy
c 55+ i, (0)\ @
+ 2 tsitaais L1 —
Tisy= x-S i UV}

+ O((u,| + w172 = 0.

In particular if we set 4, = v, = », = 0, the induction hypothesis (4.19) im-
plies that

7u(0) | 3/(0) T u0) _ 9 wl0) _
outovy ou, Juiovy outov?

This proves Lemma 4.15.
To utilize Lemma 4.15 we set x, = u,, x, = v,, X, = v, and p = — r. Then
a simple computation yields

1 5 .2 1. @
4.20 PolL = — & wﬂ(,*_l___)__,wl___,
(4-20) Vel 2P\ T lan) T 2 P,
a1 3 .8 1. 2
4.21) |FolM= — P or 2 — L, <———z ) L, 2,
Vol Vol 5 5 Po. o, o, + 3 p_axa
where
(4.22) lePF = leJZ + ‘nglz .

5. Reduction to the boundary

In [4] L. Hormander reduced the study of the estimate (3.5) from U N £
to the study of similar estimates involving pseudo-differential operators on
U N o, at least in the case s = 1. This result was extended by W. J. Sweeney
[10] to arbitrary 5, 0 << s < 1. To be able to state the result in our particular
case we shall first compute the boundary system of pseudo-differential opera-
tors in question. From (4.11) we have

(5.1 D¥D, = (L(— L) + M(— M))I, + first order terms ,

where I, stands for the two-by-two identity matrix. Let ° denote d”q°, the
principal symbol of D¥D,. A somewhat messy calculation yields
r'(x, §,t) = (L(x, §)F + |M(x, £, )P,
(5.2 = H{Vwolc* + [Rep,,(§, — i)
— (Im ng)Es]T + ?III!EI}Z}IZ‘VPFZ >
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where ¢ stands for the symbol of 9/idp, and p is assumed to be zero. The

equation r’(x, &, D,)U(p) = 0 has a unique exponentially decreasing solution
on R such that U(0) = u, which is given by

(5.3) Gl”j

u, em
where

m = %IVmPI_Z{_ i[Re(Pw1($1 —i£,)) — (Im ng)é-s]

(5.4 .
— (Fupll§F — [Re(py,(§; — &) — (Im pyn)€,]19% .

Following Hormander (see [4, Theorem 2.3.1]) we define pseudo-differential
operators P, and P, on U N o with principal symbols pi(x, &) and pi(x, &),
respectively, given by the first column of

(5.5) w@pzaammﬁj

evaluated at p = 0. More explicitly we have

pi(x, §) = % Im(p,, (5, — &) — 3(Re p,,, )€,

-6 PR — Re(p (& — i£)) — Im(puETY
(5.7 pYx, &) = — Fipw,(§ — &) + $pués .

5.8. Proposition. Let 0 < s < 1. Then (3.5) implies the following
estimate
(5.9 ol < CAIPSIE + PSS + II8IE

forall e Cy(U N w) .

Proof. Recall that the -Neumann boundary condition is equivalent to
@, = 0 on . Then Proposition 5.8 is a special case of the results of Hérmander
(see [4, Theorems 2.3.1 and 2.3.2]) and of Sweeney (see [10, Propositions 5.7
and 5.8)).

6. Proof of Theorem 3.7

First we localize the estimate (5.9).
6.1. Proposition. Let Q0 < s < 1, and set 6 = 1 — s. Suppose that the
estimate (5.9) holds with
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_k__£5<k+1
k+1 k42

(6.2)

2

where k is a positive integer. Then for every (x,&) e T*(w), |&| = 1, there
exists a constant C such that

[ 180pay
o =elzl.

75T,

2

1 2=+ p%x, & yﬂ(Da¢)(y)25—Ialé—(l—ﬁ)lﬂl

dy
iespick ol B! 0&°0x?

226‘—2(k+1)(1—6) B Da Zd Z—ZIGI(ZG—I)} ,
+ MZ_,SM Rsly (D)) [y
forall 2 > 1 arnd ¢ e C7(R,).

Proof. See Egorov [1, Theorem 1] and Hormander [5, Theorems 6.1 and
6.3].

Let x = O be a point of type m. We shall show that the estimate (6.3) can-
not hold at the point (x,, &) = (0,0,0,0,0,1) when k& < m. According to
Proposition 6.1 this proves that the estimate (5.9) does not hold with s >

1/(m + 1), which proves Theorem 3.7. Since p,,(0) = — }, according to
(5.6) and (5.7) we have
(6'4) pg(-xoa Eo) = pg(-xl)a Eo) =0 ’

and therefore we can assume that ¥ > 1. Furthermore Lemmas 4.12 and 4.15
imply that
(6.5) P, (%) = x;h(x) + O(x[™) .

Assume that the estimate (6.3) holds for some ¢ such that k?"(k DL
(k + 1)/(k + 2) with k < m. We substitute

(6.6) §5(J’) = "k(yla Yas yszza—n:) s s C:(Rs)
into (6.3) with some ¢ > 0 such that
6.7 k+De+s<k+DA-5<L1.

According to the right hand side of (6.2) we have § < (k 4+ 1)(1 — é) so
that such an ¢ can always be found. We change coordinates y, = y;, ¥, = ¥»,
y,A2%-1% =y divide both sides of (6.3) by 27%?*!~:, and let 2 — oo. Then the
left hand side of (6.3) becomes

(6.8) fR RACAI AR

Next we compute the right hand side of (6.3).
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1) Terms involving pi(x, £) and its derivatives at (x,, £%.
(@) Set gi(x, &) = Im(pp, (&, — i&,)). Then

1 aﬁ+1q1(x0’€_-o) oD I
—_—— ) 1-a-aigl
1815k 1 8! OxPoE YHD;6)(»)

6.9) = 3 _‘;_'%g%ﬁ y’ﬁ(DﬁP)(y/)z-(l-a)lﬁ!+ﬁs<—25+1—5)
Skt g i

181<k
i=1,
= 0G4,

since B, > 0 by (6.5).
(i) Set p, = $g, — 1g,. Then

1 0°t8g,(x,, &Y 8(De, o= ielom=518]
Ia+ﬁ|§(1’ca!‘31 oEDxF ¥ ¢)(y)

ar+ag
— 1 aa+5q2(x0’ EO) .Iﬁ(Da ) ',)
(6.10) gt agaw O 0DV

. 2—(a1+ aa—1jd—ag{l—6—&)~(1=-8){f1+ B2)—f3ld+e)

= 5 9808 )6 + ol) = o1)
i=t &

because

angg;é") _ (%(_ % n %‘/W»e,:o —-0, j=1,2.

(iii) Finally set £, = & = 0 in g,. Then

3:(x,0,0, &) = (o, + Re p,,))* + Re p,)&;
= — Re p, {1 — (1 + 'Pw1|2/(Re Pw:)z)i}és
(6.11) ( R N P i 2 +z>
= ({— Rep,, il 4+ O(xf™
Repu) 2, a5 bes & O Je
= (XZH(x) + O(x["*9)&, ,
where a;,j = 1, ---,m, are the coefficients in the Taylor series expansion

14+ Y7ax + O(x*Y) of /T + x about x = 0, and H(x) is a C~ func-
tion near x = 0. Thus

L 972000 &) s progs)(y)zo-ess=a-on

tp+ami<e B! 0&50x*

1 aﬁQZ(-an EO) B / §+2(1=-25—¢)—(1—-8)15]+ —-2)(1—25—
— e o Zu+ (1-20—e)~(1-8) 11+ (f3=2)(1—26—¢)
(6.12) :mzs:k B! ox* YO
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1 9*7'g,(x,, £°) 15 ,
____’__. D ! A~ -8+ (3= 1)(1-25—¢)
w51 §1 gox (D))

— 0(2 (0+2t)) R

since 5, > 2 according to (6.11).
2) As for pi(x, &) we have

— (0% /3y, — i34 /3y,)

_ll lapw(“\

o) .
2 o<ifizr-1 B Qxf YHDAY) — iDANY))

2—(1—5)|ﬁ‘ {+B3(1—-25—¢)

(6.13) + i i aﬁwl(xo) Y B (y) 25 A=) 181 +hst1~zi= )
2 o<ifizr B! ox*
fz=1
.1 1 %p,,(x) s D /Y 3-(1~3 ~D(1-25-
L _— Wy 2 Bl +(Bz~1)(1—25—¢)
5, Zs LB e (DAO)

- Z(a\l’/ayl — 0y /3y, + O™,

where we have used (6.5).
3) Finally, the remainder yields

Z“ ylﬁ(Daw)(},/)/za—<Ic+1)(1—a>—(a,+a2:»(2,s—1)+ﬁu(1—25—=)+aas
(6.14) la+3i<k+1
— 0(2(k+1):+6—(k+1)»(1—6)) — 0(1) ,

where we have used (6.7). Thus (6.8), (6.9), (6.10), (6.12), (6.13) and (6.14)
yield

;YO P dy |

2 1
(6.15) jm W)y < +C | [0 -

where 4 € C7(R;). This is impossible. To see that set (y) = f(ey), f € C5(Ry),
and let ¢ — 0. Then the left hand side of (6.15) is O(¢~®), while the right hand
side is only O(s~%). Hence Theorem 3.7 is proved..

7. Remarks on the estimate (3.5)

In [8] Kohn proved that if P € w is of type m, and @ is pseudo-convex at P,
then 2 must be odd. This result also follows by applying Propositions 2.4 of
[9] to the symbol (5.7). Furthermore Kohn conjectured that under the hypo-
thesis of Theorem 3.4 the estimate (3.5) holds with s = 1/(m + 1).

7.1. Proposition. Let P e w be a point of type m, and suppose that the
estimate (3.5) holds with s = 1/(m + 1). Then m is necessarily odd.
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Proof. 1t suffices to show that if the estimate (6.3) holds with &k = m,§ =
m/(m + 1) and (x,, &) = (0,0,0,0,0, 1), then m is odd. We shall follow the
arguments of § 6 and indicate the necessary changes. Thus we substitute

(7.2) 60 = YO, Yoo 2771 ¥ e C7(Ry)
into (6.3), where
(7.3) m+Det+o<(m+DA—-5=1.

The left hand side of (6.3) again becomes (6.8). (6.9), (6.10) and (6.12) go
through unchanged. (6.13) becomes

(7.4) — 50V /3y — i [3yD) + T, (W1, O + O,

and there is no change in (6.14). Thus the hypothesis of Proposition 7.1 im-
plies the following estimate

(7.5) IQMMWSCLS

Y 12
o 0 2 (W YO
a}’l ayz

where ¢ C3(R,). Set

Y01, Y2 ¥9) = [0, 7)8(e
Then (7.5) yields

s

2
i eﬂr(wl,ﬂ)dy s
ow,

(7.6) [ ifopesemoay < ¢ |

R3
for all f e C3(R,). According to Theorem 2 of [2], (7.6) implies

(7.7) Frw, 0) >0.
ow,0W,

(Compare Kohn [8, formula (3.10)]. Egorov’s proof of (7.7) is based on one
of Hormander’s arguments in [4]; see [4, Lemma 1.2.4, especially (1.2.16)].)
Now (7.7) clearly implies Proposition 7.1.
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